Iterated Homology of Simplicial Complexes
نویسندگان
چکیده
We develop an iterated homology theory for simplicial complexes. This theory is a variation on one due to Kalai. For 1 a simplicial complex of dimension d − 1, and each r = 0, . . . , d , we define r th iterated homology groups of 1. When r = 0, this corresponds to ordinary homology. If 1 is a cone over 1′, then when r = 1, we get the homology of 1′. If a simplicial complex is (nonpure) shellable, then its iterated Betti numbers give the restriction numbers, hk, j , of the shelling. Iterated Betti numbers are preserved by algebraic shifting, and may be interpreted combinatorially in terms of the algebraically shifted complex in several ways. In addition, the depth of a simplicial complex can be characterized in terms of its iterated Betti numbers.
منابع مشابه
Buchsbaum* Complexes
A class of finite simplicial complexes, which we call Buchsbaum* over a field, is introduced. Buchsbaum* complexes generalize triangulations of orientable homology manifolds as well as doubly Cohen-Macaulay complexes. By definition, the Buchsbaum* property depends only on the geometric realization and the field. Characterizations in terms of simplicial homology are given. It is proved that Buch...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملEnriched homology and cohomology modules of simiplicial complexes
For a simplicial complex on {1, 2, . . . , n} we define enriched homology and cohomology modules. They are graded modules over k[x1, . . . , xn] whose ranks are equal to the dimensions of the reduced homology and cohomology groups. We characterize Cohen-Macaulay, l-Cohen-Macaulay, Buchsbaum, and Gorenstein∗ complexes , and also orientable homology manifolds in terms of the enriched modules. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000